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A B S T R A C T  

The growing integration of artificial intelligence with molecular dynamics simulations has introduced new possibilities for 

fostering and improving the discovery of inhibitors in drug development. This study aimed to systematically review how 

AI fosters MD. The researcher has focused on the methodological applications, reported benefits as compared with 

classical approaches, therapeutic contexts, and existing gaps. A structured review of peer-reviewed literature showed that 

AI has been integrated across various important domains. These integrations consistently improved accuracy, 

computational efficiency, and decision-making value. However, its applications span across kinases, viral proteins, and 

GPCRs. Although viral proteins and GPCRs have shown more mature applications, kinase-focused research appears 

comparatively limited. Despite these advances, notable challenges also persist, which include methodological opacity, lack 

of standardized benchmarks, and limited translational validation. The findings suggest that AI does not replace MD as it 

serves as a complementary approach that strengthens predictive and interpretive capacity. Thus, this review emphasizes 

the importance of standardized datasets, reproducible workflows, and experimental translation for maximizing the impact 

of AI-MD frameworks in drug discovery. 
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INTRODUCTION 

Background: Challenges in traditional drug discovery 

Drug discovery is a risky and costly process that takes a 

long time and necessitates efficient decision-making due to 

the high failure rates and time-consuming process (Wouters 

et al., 2020). Recent studies put the approximate costs of 

total R&D that produce a medicine approved for market at 

between $380.0 to $418.0 billion, which is associated with 

significant uncertainty and a high risk of financial loss 

(Sertkaya et al., 2024). Of the programmes initiated in 2011-

2020, very few were approved, which highlights the high 

attrition rates during the phases (Biotechnology Innovation 

Organization, 2020). Early discovery also must explore 

huge chemical and conformational space; libraries of 

structures that can be readily synthesized have grown to tens 

of billions of structures, which is many times greater than 

can be experimentally tested (Carlsson and Luttens, 2024; 

Korn et al., 2023). The flexibility of proteins and structured 

water is difficult to model with fixed systems, and adds to 

the uncertainty in affinity and selectivity, which are 
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involved in binding (Ahmed et al., 2023; Szalai et al., 

2024). 

Role of Computer-Aided Drug Discovery and limitations 

of classical Molecular Dynamics 

Computer-Aided Drug Discovery (CADD), spanning 

docking, pharmacophores, QSAR, and related approaches, 

helps narrow search spaces and prioritise synthesis by 

learning structure-activity patterns and proposing plausible 

binding modes (Ahmed et al., 2023; Oselusi et al., 2024). 

Molecular Dynamics (MD) adds atomistic realism by 

simulating protein–ligand systems in explicit solvent, 

revealing induced fit, metastable states, and solvent effects 

that influence recognition and binding (Ahmed et al., 2023; 

Patil et al., 2024; Salo-Ahen et al., 2020). However, 

classical MD faces persistent limits: insufficient sampling of 

rare events on microsecond-millisecond timescales, force-

field inaccuracies, and difficulties assessing convergence for 

reliable thermodynamics (Bastida et al., 2024; Hénin et al., 

2022; Wang et al., 2024). Enhanced-sampling methods 

mitigate but do not remove the timescale burden, and they 

add methodological complexity to already demanding 

workflows (Mehdi et al., 2024; Shen et al., 2023). Even 

with best practices, free-energy pipelines require careful 

system setup and substantial computing, which constrains 

throughput in live projects (Salo-Ahen et al., 2020; York, 

2023). 

Emergence of Artificial Intelligence 

Recent advances in machine learning provide new ways to 

represent molecules and proteins and to learn from 

structural and biophysical data at scale (Visan and Negut, 

2024). Supervised models and graph neural networks 

improve property prediction and prioritisation, while 

transformers and geometric deep learning capture long-

range and 3D relationships relevant to binding (Abbas et al., 

2024; Obaido et al., 2024; Qureshi et al., 2023). Diffusion 

models now produce poses and complexes that outperform 

many traditional search-based docking methods under 

benchmark conditions, enabling faster screening with 

calibrated confidence estimates (Corso et al., 2022; Nakata 

et al., 2023). Artificial Intelligence (AI) also accelerates or 

augments MD by guiding sampling, learning collective 

variables, or supplying surrogates and learned force fields 

that retain accuracy while reducing cost (Galvelis et al., 

2023; Mehdi et al., 2024; Röcken and Zavadlav, 2024). 

Artificial intelligence has transformed how molecular 

information is represented, predicted, and generated (Joshi 

and Kumar, 2021; Karthikeyan and Priyakumar, 2022). 

Transformers model sequences and 3D relationships, 

enabling long-range context for affinity and selectivity 

(Huang et al., 2023; Jiang et al., 2025). Diffusion models 

map distributions over structures and molecules, supporting 

controllable design (Wang et al., 2025). At the same time, 

specialized hardware and software have lowered the barrier 

to training and inference. When combined with molecular 

dynamics, AI capabilities open new workflows. Learned 

bias potentials and adaptive sampling can focus trajectories 

on relevant states. Machine-learned force fields and hybrid 

quantum-classical models can improve accuracy while 

preserving speed (Couzinié et al., 2025; Willow et al., 

2025). Surrogate models can stand in for costly steps, 

enabling wider exploration under fixed budgets. Together, 

AI and MD promise a balance of physical realism and 

computational efficiency, with the potential to meaningfully 

shorten cycles, increase confidence before synthesis, and 

expand the accessible chemical spaces. New datasets that 

pair trajectories with binding labels (for example, protein-

ligand MD traces) further support training and 

benchmarking of AI-MD hybrids (Siebenmorgen et al., 

2024). In parallel, deep generative models and diffusion-

based energy landscapes can suggest states for MD to 

refine, improving the balance between exploration and 

physical validation (Lu et al., 2024). 

Evidence on AI-augmented MD is growing quickly but 

remains fragmented across chemistry, machine learning, and 

structural biology outlets, making it difficult to compare 

methods and judge when they outperform classical 

baselines. Reporting practices vary widely: many studies 

differ in dataset curation, split strategies, baseline selection, 

uncertainty reporting, and convergence checks, which 

complicates fair assessment and reproducibility (Heil et al., 

2021). To support robust evaluation of AI-MD methods and 

their translational potential, recent community guidance 

emphasises transparent documentation of data, code, 

models, and computational environments (Kapoor et al., 

2024). The broader FAIR (Findable, Accessible, 

Interoperable, and Reusable) movement also encourages 

practices that make data and software findable, accessible, 

interoperable, and reusable across teams, which is directly 

relevant to AI-MD pipelines (Welter et al., 2023; Whitacre 

et al., 2024). Given these dynamics, a structured and 

transparent review can map integration patterns, summarise 

benefits and limits, and highlight open problems where 

consensus and better evidence are needed (Visan and Negut, 

2024). 

The main aim of this study is to systematically evaluate how 

artificial intelligence integrates with molecular dynamics to 

improve inhibitor discovery, focusing on kinases, viral 

proteins, and GPCRs, by synthesising evidence from the last 
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decade across 20 peer-reviewed studies. 

This review pursues four objectives: catalogue AI-MD 

integration patterns, evaluate performance and efficiency 

against established baselines, situate applications by 

therapeutic area, and surface methodological gaps that limit 

reproducibility and adoption. Against these objectives, the 

review asks four questions in direct alignment with the 

study idea: 

1. What AI methods have been applied to enhance MD 

simulations in drug discovery? 

2. What are the reported benefits and limitations of AI-

driven MD approaches compared to classical methods? 

3. What therapeutic areas have seen successful 

applications of AI-augmented MD? 

4. What gaps and challenges remain for future research? 

 

MATERIALS AND METHODS 

This review applies a transparent and reproducible approach 

to identify, appraise, and synthesise research on artificial 

intelligence augmented molecular dynamics (AI-MD) for 

drug discovery. Reporting follows PRISMA 2020 so that 

search steps, screening decisions, and inclusion counts are 

traceable end-to-end (Page et al., 2021). 

Focus and Justification 

The review concentrates on studies where AI is used 

together with MD to identify or optimise small-molecule 

inhibitors for kinases, viral proteins, or GPCRs because 

these target classes are central in modern discovery and 

have recent, high-quality evidence bases. Kinases remain a 

major drug class with dozens of approvals, which makes 

them a strong testbed for methods that aim to improve 

efficiency and accuracy (Roskoski Jr, 2024). GPCRs 

account for a large share of approved drugs and continue to 

benefit from structure-based campaigns, so improvements at 

the AI-MD interface are directly relevant to translation 

(Zhang et al., 2024). Viral proteins (for example, viral 

proteases) are validated therapeutic targets in antiviral 

discovery, providing clear biochemical readouts for 

benchmarking AI-MD pipelines (Borges et al., 2024). The 

time window is the last ten years to capture the deep-

learning era and the rapid growth of ML-enhanced sampling 

and learned potentials that make AI-MD integration feasible 

in practice. The final sample is twenty peer-reviewed 

articles, which enables depth of extraction across methods 

and targets while preserving breadth across the three 

therapeutic areas. 

 

 
Figure 1: PRISMA Flow Diagram (Source: Author-generated). 
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Eligibility Criteria 

Eligible records are original studies that: (a) combine an AI 

or machine-learning component with MD in a single 

workflow; (b) address a drug-discovery task relevant to 

inhibitor identification, pose refinement, free-energy 

estimation, or prioritisation; (c) report at least one evaluable 

outcome (for example, affinity error, pose RMSD, 

enrichment, hit rate, or compute/time); (d) involve kinases, 

viral proteins, or GPCRs; and (e) are published in English 

within the last ten years. Reviews, editorials, AI-only or 

MD-only studies, purely materials-science simulations, and 

records without measurable outcomes are excluded. 

Information Sources and Search Strategy 

Searches cover PubMed/MEDLINE, Scopus, Web of 

Science Core Collection, IEEE Xplore, and ACM Digital 

Library. The core Boolean string combines AI terms 

(―machine learning,‖ ―deep learning,‖ ―graph neural 

network,‖ ―transformer,‖ ―diffusion‖) with MD terms 

(―molecular dynamics,‖ ―enhanced sampling,‖ ―free 

energy,‖ ―force field‖) and drug-discovery terms (―protein-

ligand,‖ ―docking,‖ ―inhibitor,‖ ―kinase,‖ ―GPCR,‖ ―viral 

protease‖). 

Screening and Selection 

All records are exported and deduplicated. Title/abstract 

screening and full-text review are performed independently 

by two reviewers using a piloted form; disagreements are 

resolved by discussion. Reasons for exclusion are recorded 

in the full text to ensure auditability under PRISMA 2020. 

The target is twenty papers that meet all criteria and 

collectively cover the three therapeutic areas and the main 

AI-MD integration modes. 

Data Extraction 

A standardised template captures: bibliographic details; 

target class and biological system; AI approach (for 

example, graph neural networks, transformers, diffusion or 

other generative models); MD details (engine, force field, 

solvent/ions, timescale, any enhanced sampling); datasets 

and benchmarks; baselines; outcomes with units; 

uncertainty reporting; compute cost or speedup; code and 

data availability; and authors’ stated limitations. Extraction 

is piloted on three papers and then performed in duplicate. 

The template emphasises items needed to judge whether AI 

improves sampling efficiency, accuracy, or decision value 

over established MD and docking baselines. 

Quality Appraisal and Reproducibility 

Risk of bias is assessed with a checklist adapted for ML-

based science, covering dataset integrity and leakage 

avoidance, clarity of train/validation/test splits and any 

external validation, adequacy and fairness of baselines, 

transparency of model selection and hyper-parameters, 

statistical uncertainty (replicates, confidence intervals), MD 

protocol completeness and convergence checks, and 

reproducibility (code/data/environment availability). 

Synthesis Plan 

A narrative synthesis organises findings by AI-MD 

integration role and by therapeutic area, with tables that 

compare outcomes and compute cost against classical 

baselines. Where studies report compatible metrics on 

similar tasks and datasets, random-effects meta-analysis 

may be attempted; otherwise, effect-direction summaries are 

used. The synthesis explicitly distinguishes peer-reviewed 

evidence from preprints, and comments on the readiness 

level of each approach for kinase, viral, or GPCR 

programmes. 

Transparency 

The full search strings, inclusion decisions, extraction 

forms, and synthesis code will be shared as supplementary 

material to support reuse and replication, reflecting current 

recommendations for open and reproducible ML-enabled 

science (Kapoor et al., 2024). 

 

RESULTS 

Results Orientation and Mapping to Research Questions 

This Results section reports findings from 20 peer-reviewed 

studies on AI-augmented molecular dynamics within a 

PRISMA-aligned review framework (Page et al., 2021). 

Themes were derived through manual, RQ-guided coding; 

findings are organized by research questions with cross-

references to kinases, viral proteins, and GPCRs. 

Corpus Description: Studies, Years, Venues, Designs 

The corpus comprises 20 peer-reviewed studies published 

between 2018 and 2025, all within the ten-year eligibility 

window specified in the protocol. All records are journal 

articles; no conference papers were identified in the extraction. 

Designs are predominantly computational, with three studies 

reporting computational analyses alongside experimental or 

assay-level follow-up; no explicit statements of external 

validation on an independent test set were identified in the 

extraction notes. Therapeutic coverage is largely general-

method: eighteen papers present cross-target or platform-level 

approaches, one focuses on viral proteins, and one on GPCRs; 

no kinase-specific study appears as a dedicated subset in this 

corpus. Outcome reporting is mainly conceptual or qualitative; 

several studies describe performance in terms of model 

discrimination or prioritization. 

Coding and Thematic Procedure (Manual, RQ-Guided) 

Thematic analysis was conducted manually: each study was 

coded against the four research questions, and codes were 



J. Pharma. Bio. Med., 03 (02) 2025. 171-184         DOI: 10. 39401/jpbm.003.02.0071 

 

175 
 

iteratively consolidated into higher-order themes (RQ1 

integration modes; RQ2 benefits/limitations; RQ3 

therapeutic applications; RQ4 gaps), following 

contemporary reflexive thematic analysis guidance (Braun 

and Clarke, 2023). Exemplar quotations and metrics were 

extracted verbatim, when available, to ground themes in 

evidence. 

RQ1 – What AI methods have been applied to enhance 

MD? 

Theme A: Guided/Enhanced Sampling 

This theme covers methods where artificial intelligence 

guides exploration of conformational space by learning 

collective variables, proposing adaptive sampling policies, 

or steering simulations toward rare but relevant transitions. 

The use of artificial intelligence (AI) in drug discovery has 

introduced a new era of innovation and efficiency in 

precision medicine (Nayarisseri et al., 2021; Raparthi et al., 

2022; Tiwari et al., 2023). Besides MD simulations, other 

methods of computation exist, but they can broadly be 

described as machine-learning-based methods, which need 

to be trained on experimental data (Salo-Ahen et al., 2020). 

The typical workflow first trains an AI model on 

preliminary trajectories or structural ensembles, proposes 

states or reaction coordinates, and then runs molecular 

dynamics focused on those regions; evaluations report 

whether trajectories visit more diverse states and whether 

target events occur sooner, alongside convergence checks 

where available (Mehdi et al., 2024; Prašnikar et al., 2024; 

Sarkar et al., 2023).  Practically, in the use of ML, the 

workflow is usually fixed (Kaptan and Vattulainen, 2022). 

A large number of software packages used to do MD of 

biomolecules exist, including GROMACS, AMBER, 

NAMD, OpenMM and CHARMM (Cui et al., 2025; Salo-

Ahen et al., 2020), indicating the prevalence of community 

tooling of enhanced sampling. In recent years, AI usage rose 

in drug discovery (Agrawal, 2018), and structural biology 

has shown numerous clinically relevant 3D protein 

structures. The most prominent of these breakthroughs is in 

G protein-coupled receptors (GPCRs), ion channels, and 

other membrane proteins- more than half of drug targets- 

that have offered potent ligand screening and lead 

optimization opportunities (Wei and McCammon, 2024). 

Theme B: Learned Force Fields / ML Potentials 

Machine learning (ML) has been used in all types of 

problems in biomolecular simulations. It assists in turning 

out significant structural features to analyze and enhances 

the signal-to-noise ratio by eliminating redundant degrees of 

freedom within the system or the process under 

investigation (Kaptan and Vattulainen, 2022). Recent work 

trains graph-based or neural potentials on large quantum-

chemical datasets and deploys them in protein-ligand 

systems, reporting higher fidelity to reference energies and 

competitive binding-relevant accuracy (Sun et al., 2022). 

The reference data to be used in the training process of any 

machine learning (ML) model should be split into two 

distinct subsets: training/validation and testing. A 

training/validation set is employed to fit and refine the 

model, whereas only the test set is employed after the 

training to assess the generalization performance, i.e., the 

performance of the model on unknown data (Unke et al., 

2021). Reported constraints include domain limits of the 

training data, treatment of long-range interactions, and 

handling of polarization and charged groups, which remain 

active areas of development (Salo-Ahen et al., 2020; Sun et 

al., 2022; Unke et al., 2021). Emerging toolchains (for 

example, OpenMM plugins for deep potentials) have 

lowered barriers to testing ML potentials within existing 

workflows. For instance, a study reported that quantum 

mechanical molecular dynamics (QM-MD) can be used to 

model electronic polarization and is computationally 

expensive and limited to reasonably small numbers of 

atoms. In comparison, more powerful and more efficient 

molecular dynamics simulations can be conducted due to 

the high computational power and parallel processing of the 

graphical processing units (GPU) (Fullenkamp et al., 2025; 

Qureshi et al., 2023). 

Theme C: Scoring, Refinement, and Free-Energy 

Correction 

AI models are used to re-score docking poses, refine 

geometries before or after short MD, and correct free-energy 

estimates to reduce systematic bias and improve ranking 

(Vittorio et al., 2024). Prediction of sliding docking and 

other docking events, and docking scores, is faster and more 

accurate when using deep learning technologies (Sun et al., 

2022). In large structure-based screens, recent AI-

augmented scoring methods have improved pose accuracy 

and affinity prediction over traditional docking, after which 

MD serves as a physics gate to test pose stability, water 

rearrangements, and pocket binding (Salo-Ahen et al., 2020; 

Sun et al., 2022; Unke et al., 2021). In binding-free-energy 

workflows, AI-guided triage can reduce the number of 

expensive alchemical or QM/MM calculations while 

maintaining accuracy, with MD providing reference 

thermodynamics for calibration and correction (Clark et al., 

2024; Salo-Ahen et al., 2020; Unke et al., 2021; Unke et al., 

2024). However, according to Noé et al. (2020), coarse-

grained molecular dynamics (MD) simulations can typically 

capture the thermodynamics of atomic systems well, but are 
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not always predictive of the correct kinetics. Baselines are 

generally classical docking scores, uncorrected free-energy 

protocols, or MD-only refinement, enabling direct 

comparison of AI contributions (Vittorio et al., 2024). 

Theme D: Surrogate Modelling for Triage and 

Experiment Selection 

Surrogate models approximate costly physics, such as MD-

based binding free energies or quantum steps, to prioritize 

compounds and states under fixed compute budgets (Harren 

et al., 2024; Shirzadi et al., 2025). Recent active-learning 

frameworks combine generative design with absolute free-

energy MD, using a surrogate to score candidates and 

update policies after each simulation round, thereby 

focusing high-fidelity calculations on the most informative 

molecules (Loeffler et al., 2024). Several deep learning 

models, including deep neural networks (DNNs), 

convolutional neural networks (CNNs), and deep confidence 

networks, among others, have been utilized in various 

domains, and in many cases, they have demonstrated a 

better performance than other computational models (Sun et 

al., 2022). Where reported, uncertainty is handled via 

confidence metrics or selection heuristics to reduce over-

confident errors, and some studies include external or 

prospective checks to test generalization. 

Theme E: Simulation Analysis and Feature Discovery 

AI is widely applied to analyze MD trajectories, extracting 

low-dimensional representations, identifying kinetically 

meaningful states, and learning contact patterns that clarify 

mechanisms and guide design. Not only AI and ML 

technologies can increase the effectiveness of the processes, 

but in certain instances, they can even decrease or even 

eliminate the necessity of clinical trials, as they allow the 

use of sophisticated simulations. They also enable 

researchers to learn more about molecules without doing a 

lot of trials, hence, reducing costs and resolving ethical 

issues (Patel and Shah, 2022). Molecular dynamics (MD) 

simulation involves the calculation of the dynamics of 

atoms and molecules through specified force fields and 

initial conditions (Cui et al., 2024). Curation trajectory 

resources applied in GPCR studies allow the study of 

activation motifs and state occupancy used to design ligands 

(Cui et al., 2024). 

 

Table 1: RQ1: AI methods applied to enhance MD. 

Theme Core Idea 

A AI steers MD toward rare states via learned variables/adaptive policies. 

B ML potentials replace/augment classical force fields. 

C AI rescoring/refinement reduces docking/free-energy bias. 

D Surrogates approximate costly MD/QM steps for triage. 

E AI interprets MD outputs for mechanism discovery. 

 

RQ2 – What are the Reported Benefits and Limitations 

vs Classical Methods? 

Theme A: Benefits – Accuracy Gains 

To begin with, AI pose generators and learned scoring 

functions had a beneficial effect on pose selection on 

standard docking benchmarks, which increased the 

quality of structures entering short MD refinement 

(Corso et al., 2022; Sarkar et al., 2023; Zhou et al., 

2024). The AI algorithms are important in designing new 

drug molecules that have better potency and selectivity. 

Application AI can be used to design optimized 

molecular structures targeting specific biological 

activities and also fulfilling specified pharmacological 

and safety criteria by deep learning models and 

generative adversarial networks (GANs) (Serrano et al., 

2024). The benefit of this model is also that it enhances 

the data efficiency of the model through harnessing the 

alchemical information (Unke et al., 2021). Also, the 

ML-guided enhanced sampling was more reliable in 

reaching the relevant conformational states to facilitate 

consistent stability checks of the ligand-protein contacts 

before ranking (Cui et al., 2025; Qureshi et al., 2023). 

Across the corpus, gains were most pronounced for pose 

scoring and docking. 

Theme B: Benefits – Efficiency and Computing Savings 

Studies reported efficiency gains in three complementary 

ways. First, machine-learned force fields delivered accuracy 

at orders-of-magnitude lower cost, enabling longer or more 

numerous trajectories within a fixed budget (Unke et al., 

2021; Unke et al., 2024). Also, AI and ML can support data 

cleaning and curation, identify duplicate participants, 

impute missing values, and standardize regulated 

terminology in drug development projects. They can also 

assist in creating metadata, masking and de-identifying 

personal information, and efficiently searching and 

retrieving stored data. These applications improve both the 
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accuracy of datasets and the efficiency of data processing 

for analysis (Niazi, 2023). 

Theme C: Benefits – Decision Value and Validation 

AI is a field of computer science, statistics, and 

engineering that uses algorithms and models to carry out 

tasks and demonstrate abilities such as learning, decision-

making, and prediction (Niazi, 2023). Across decision 

points, AI can advance this trend by enhancing 

diagnostics, gathering personalized information, and 

supporting clinical decision-making (Kokudeva et al., 

2024). Active-learning frameworks that integrate 

generative design with absolute free-energy MD 

demonstrated efficient selection policies and maintained 

accuracy while evaluating fewer compounds, supporting 

practical portfolio triage. Findings aligned with the pose-

quality improvements reported. 

 

Table 2: RQ2: Benefits and Limitations of AI vs Classical MD. 

Theme Core Idea 

A AI improves pose generation, scoring, and sampling. 

B ML potentials and AI preprocessing reduce cost. 

C AI supports smarter triage and portfolio choices. 

D Recurring issues across the corpus. 

 

RQ3 – Which Therapeutic Areas Show Successful AI-

Augmented MD Applications? 

Theme A: Kinases 

Kinase studies focus on shifts between active and inactive 

states, especially the DFG-in/DFG-out transition, because 

these motions reshape pockets and influence selectivity (Cui 

et al., 2025; Serrano et al., 2024; Wei and McCammon, 

2024). Machine learning (ML) methods and molecular 

dynamics (MD) simulations are also used more frequently 

in de novo drug design to improve efficiency and accuracy. 

In addition, interpretable machine learning and deep 

learning methods further support this progress. By 

integrating AI with MD, researchers can design drugs more 

effectively and efficiently than before (Blanco-Gonzalez et 

al., 2023). 

Theme B: Viral Proteins 

For viral targets, workflows often combine AI-assisted 

docking or machine-learning triage with MD refinement to 

prioritize protease or polymerase inhibitors (Boniolo et al., 

2021; Sun et al., 2022). Reported gains include better 

ranking and discrimination versus docking alone, and 

efficient pre-filtering of ultra-large libraries with AI before 

physics-based evaluation. Case studies on SARS-CoV-2 

illustrate this and report stable binders after MD validation 

(Boniolo et al., 2021). 

Theme C: GPCRs 

GPCR applications rely on ensembles of receptor states in 

membranes; curated MD resources enable analysis of 

activation motifs and state occupancy relevant to design 

(Kaptan and Vattulainen, 2022; Wei and McCammon, 

2024). Deep learning helps predict or select ligand poses 

and, together with MD, supports ranking at ortho-steric and 

allosteric sites (Sun et al., 2022). Recent work shows that 

studies emphasize that AI-guided ensemble docking and 

MD validation improve practicality when structural 

variability challenges single-structure screens (Serrano et 

al., 2024; Wei and McCammon, 2024). 

RQ4 – What Gaps and Challenges Remain? 

Theme A: Methodological Gaps 

Conventional drug discovery relies heavily on trial-and-

error testing, which is time-consuming, expensive, and often 

produces low accuracy. These methods are also restricted by 

the availability of test compounds and the difficulty of 

predicting their behavior in the body (Blanco-Gonzalez et 

al., 2023). 

Theme B: Limitations of Deep Learning Models in Drug 

Design 

Deep learning (DL) models in drug design mainly learn 

from observed data and often overlook the dynamic 

interactions between proteins and ligands. Molecular 

dynamics (MD) simulations address this gap by capturing 

protein conformations, interaction evolutions, and complex 

processes such as protein folding. Unlike standard docking 

approaches, MD can account for conformational changes 

during ligand binding, helping to overcome key limitations 

of structure-based drug design (SBDD) (Sun et al., 2022). 

 

DISCUSSION 

This study aimed to systematically assess how AI methods 

have been integrated with molecular dynamics simulations 

for fostering inhibitor discovery and therapeutic 

development. The researcher has also focused on identifying 

methodological innovations, benefits compared with 

classical approaches, therapeutic applications, and 

remaining gaps. In relation to RQ1, there are various distinct 
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AI strategies which have emerged in the prior literature. 

Past studies have demonstrated that machine learning can 

direct MD trajectories toward functionally relevant 

conformations. However, studies show that reinforcement 

learning frameworks and adaptive neural networks 

significantly reduced the timescales which is required for 

observing the rare transitions (Kleiman and Shukla, 2022; 

Shin et al., 2019). These findings are consistent with the 

prior research, which noted that enhanced sampling using 

AI captures metastable states with greater efficiency as 

compared to the unbiased long-timescale MD (Mehdi et al., 

2022; Tian et al., 2022). Similarly, results also revealed that 

machine-learned force fields and neural network potentials 

provide near ab initio accuracy at reduced computational 

cost (Unke et al., 2021). Researchers demonstrated the 

reinforcement learning frameworks in combination with 

MD for de novo molecule design and drug response 

prediction (Atance et al., 2022). Researchers also agree that 

ML is capable of generalizing across chemical space while 

maintaining quantum-level precision. These findings also 

resonate with the performance of ANI models, which have 

been shown to extend to drug-like molecules (Lahey et al., 

2020; Yang et al., 2024). Graph neural networks and hybrid 

ML-physics approaches have been shown to improve 

docking and free-energy predictions, as they can reduce the 

false positives (Cain et al., 2022). 

Regarding RQ2, there are main categories of benefits and 

limitations that were evident in the results. Accuracy gains 

were frequently reported. In this regard, ML force fields 

reduce systematic errors, and AI-assisted sampling uncovers 

biologically relevant conformers overlooked by 

conventional MD (Boniolo et al., 2021). Such 

improvements also align with the findings of prior 

researchers who showed that ML-based enhancements are 

important in improving the structural accuracy and binding 

predictions (Min et al., 2024). Efficiency and computing 

savings are also equally significant, as studies demonstrated 

that AI approaches achieved quantum-level accuracy with 

orders of magnitude lower computational resources (Unke et 

al., 2022). These benefits also align with wider claims that 

AI provides predictive accuracy and actionable insights for 

drug design (Moingeon et al., 2022). However, notable 

limitations temper these advances. However, there are 

various challenges which are evident in the past literature. 

Researchers underscored that AI in drug discovery often 

suffers from poor reproducibility and inadequate reporting 

of uncertainty. Thus, AI-augmented MD offers clear 

improvements in accuracy, efficiency, and decision support, 

but its credibility and translational potential are constrained 

by methodological limitations and data biases. 

With respect to RQ3, therapeutic applications clustered 

around kinases, viral proteins, and GPCRs. For kinases, 

results also depicted that AI classifiers combined with MD 

captured conformational transitions. Researchers argue that 

dynamic solvent networks lead to differential kinase 

inhibition and cannot be captured by static docking alone 

(Lee et al., 2018). Viral protein studies also consider AI 

docking integrated with MD so that the inhibitors can be 

optimized for viral proteases and polymerases (Varghese et 

al., 2025). It shows broader evidence that AI-assisted 

docking accelerated antiviral discovery during COVID-19. 

GPCR plasticity poses major challenges for conventional 

docking and can be addressed through dynamic ensemble 

methods. However, these applications suggest that AI-MD 

integration adapts successfully across therapeutic classes. 

RQ4 also showed key gaps and challenges that must be 

addressed for broader adoption. Methodological gaps 

involved the lack of consensus protocols for benchmarking 

AI-MD methods and insufficient external validation across 

diverse protein classes. Data and benchmarking gaps are 

also evident, as researchers focused on the scarcity of 

standardized, target-stratified datasets that integrate MD 

trajectories with experimentally validated binding data. This 

aligns with FAIR-data advocacy (Korlepara et al., 2024; Liu 

et al., 2025) It stresses that interoperable datasets are critical 

for reproducibility and cross-study comparability. 

Validation and translation gaps were perhaps the most 

prominent, as few studies extended computational results to 

experimental pipelines or clinical evaluation. It also raises 

important concerns regarding the real-world impact of 

current methods (Li et al., 2024; Wang et al., 2022). Thus, it 

is important to address these challenges that will require 

community-wide efforts in benchmark development, data 

sharing, and reproducibility standards. 

 

RESEARCH IMPLICATIONS 

Theoretical implications 

The results of this review were important in providing 

several theoretical contributions to the growing body of 

literature regarding AI integration with molecular dynamics 

(MD). The findings extend computational drug discovery 

theories as they show that AI does not replace physics-based 

models but enhances them. It is evident through guided 

sampling, machine-learned force fields, and surrogate 

modeling. This suggests a hybrid paradigm where predictive 

accuracy originates from both physics-grounded and data-

driven approaches. As a result, existing theoretical models 

of molecular recognition and binding can be enhanced. 
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From a theoretical viewpoint, this also contributes to a 

broader understanding regarding protein–ligand dynamics, 

as AI-enhanced MD provides evidence that solvent effects, 

conformational flexibility, and hidden states can be 

systematically incorporated into mechanistic explanations of 

inhibition (Gupta et al., 2022). Thus, the findings also call 

for refining theoretical frameworks to integrate principles of 

transparency, interpretability, and generalizability. Thus, the 

review expands conceptual boundaries as it positions AI-

MD as a methodological tool and as a new theoretical lens 

for understanding the dynamics of molecular interactions in 

drug discovery. 

Practical Implications 

From a practical perspective, the review underscores that 

there are important implications for researchers, industry 

practitioners, and policymakers. The benefits of AI-MD 

integration play an important role in improving accuracy, 

efficiency, and decision-making value (Prašnikar et al., 

2024). It suggests that pharmaceutical pipelines can be 

optimized through the integration of hybrid models for lead 

identification and prioritization. For therapeutic 

applications, particularly in viral proteins and GPCRs, AI-

MD are important in providing tools which can explore the 

conformational changes that are inaccessible to static 

docking. As a result, inhibitor selectivity and effectiveness 

can be improved. At the same time, the reported challenges 

also highlight the need for industry-wide practices that 

emphasize reproducibility, standardized benchmarks, and 

open data sharing. It implies that investments in AI should 

be paired with transparent protocols and cross-validation 

against experimental assays so that the reliability can be 

ensured. Policymakers and funding agencies can also use 

these insights to support their initiatives around FAIR data 

and reproducibility standards. It enables broader access and 

comparability across studies. Practically, the review 

underscores that AI-MD has transformative potential for 

drug discovery. However, its impact will depend on 

community-wide collaboration, open resources, and 

rigorous translation into experimental and clinical contexts. 

 

LIMITATIONS AND FUTURE RESEARCH 

INDICATIONS 

This review is limited by the scope of included studies. The 

review was restricted to peer-reviewed articles and may not 

fully capture unpublished or proprietary AI-MD 

applications currently under development in the 

pharmaceutical industry. Another limitation is the variability 

in methodological detail and benchmarking across the 

reviewed studies. It constrained the direct comparisons and 

can also introduce bias in interpreting the reported benefits.  

Future research can focus on prioritizing the development of 

standardized benchmarks, interoperable datasets, and 

reproducible workflows so that comparability can be 

improved. Moreover, greater integration of experimental 

validation and clinical translation is required to bridge 

computational predictions with therapeutic outcomes. 

Expanding applications beyond the studied targets and 

investigating explainable AI models will also be critical for 

advancing both scientific credibility and real-world 

adoption. 

 

CONCLUSION 

This study aimed to systematically review how AI methods 

have been integrated with molecular dynamics simulations 

to foster inhibitor discovery and therapeutic development. 

The findings showed that AI enhances MD through guided 

sampling, machine-learned force fields, refined scoring, and 

surrogate modelling. It offers improvements in accuracy, 

efficiency, and decision value as compared with classical 

approaches. In this context, AI-MD integration provided 

insights regarding the conformational dynamics and 

improved prioritization of drug candidates. However, 

significant challenges remain evident, which include 

methodological gaps, limited benchmarking resources, and 

insufficient experimental validation. It also constrains 

broader adoption. Overall, this review highlights that AI 

augments rather than replaces MD. It positions hybrid 

approaches as powerful tools for drug discovery. Future 

progress can be focused on addressing reproducibility and 

data-sharing challenges so that computational advances 

translate effectively into clinical and therapeutic contexts. 
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